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Incoherent neutron scattering functions for diffusion inside two concentric spheres

D. J. Bicout*
Institut Laue-Langevin, Theory Group, 6, Rue Jules Horowitz, Boıˆte Postale 156 38042 Grenoble Cedex 9, France

~Received 11 January 2000!

We consider the diffusion of a particle inside two concentric spheres as a model for diffusing motions inside
and between two semipermeable subregions or sublayers of a confining region. Analytic expressions for the
elastic incoherent structure factor~EISF! and the incoherent scattering correlation function,C(Q,t), are de-
rived for this model. It is found that, as a result of interferences between regions, the EISF is a weighted
coherent summation over amplitudes corresponding to subregions and the relaxation rate ofC(Q,t) has a
turnover behavior with a minimum atQm . In addition to the single exponential behavior forQ,Qm , C(Q,t)
also shows a biexponential decay as a function of time for intermediate values ofQ>Qm . The rate of decay
at short times is related to diffusion over length scales under consideration while at long times it is given by the
relaxation to equilibrium in fluctuations of population between subregions.

PACS number~s!: 02.50.Ey, 66.10.Cb, 87.15.He
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I. INTRODUCTION

Incoherent neutron scattering from single-particle hyd
gen atoms provides a means for investigating motions
atoms, molecules, chemical species, or macromolecule
liquids, crystals, or powders@1#. In this technique, the spatia
and temporal information on the particle motions are o
tained from the incoherent scattering functionS(Q,v),
which describes the distributions of the scattering wave v
tor Q and energy transfer\v. In the Born approximation the
functionS(Q,v) is related by the double Fourier transform
tion in space and time to the Van Hove self-correlation fu
tion @2#, G(r ,tur0), which describes the correlations betwe
positions of one and the same particle at different times,
the probability density of finding the particle at the positionr
at time t conditional that it was initially atr0 ~in general,r
and r0 describe many degrees of freedom, such as tran
tion, rotation, . . . , but forsimplicity we will be concerned
only with the translation!. For a particle diffusing in a poten
tial V(r ) due to interactions with its environment,G(r ,tur0)
is the Green’s function of the diffusion equation describi
the particle dynamics. From a theoretical standpoint, this
however, a rather difficult task of determining the Gree
function and hence computing the incoherent scattering fu
tion for diffusion in an arbitrary potential.

However, for many physical situations of interests li
molecules at surfaces, in micellar systems, or in vesicles
structural cages, the interacting system can be modeled
geometrically confining potentialV(r ) and the problem re-
duces to diffusion of a particle in a bounded space. For th
situations, there is, for instance, the model of diffusion ins
a sphere with an impermeable surface for which the ana
cal expressions ofS(Q,v) have been previously calculate
by Volino and Dianoux@3# for the continuous diffusion. The
main features of the model are that the elastic incohe
structure factor~EISF! provides the single confining lengt
~i.e., the sphere radius! and the almost LorentzianS(Q,v)
@or equivalently, the exponential incoherent scattering co
lation functionC(Q,t)# is characterized by the time scale f
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the particle to diffuse over the entire sphere. Similar resu
were derived by Hall and Ross@4# for the jump-diffusion
motions in a segment and a cube. All these results have b
subsequently used, for example, to study the dynamics
water molecules on the surface of proteins as done
Bellissent-Funelet al. @5# with an extension to account fo
the presence of immobile particles.

In this paper we consider the situation where partic
diffuse within a large closed region or cage containing a
other semipermeable cage that divides the system into
subregions. For simplicity, we consider spherical symme
cages that fit together and model the problem by the di
sion of a particle inside two concentric spheres with the in
sphere~of smaller size! having a semipermeable surface a
the outer one~of larger size! an impermeable surface, i.e
confining. Our goal is to derive for this model the analytic
expressions and approximations for the EISF and the in
herent scattering correlation functionC(Q,t) which carries
the same information as the inelastic part ofS(Q,v).

The outline of the paper is as follows. Section II and t
Appendix introduce notations, describe the general form
ism, and define the relevant quantities to be calculated
Sec. III the formalism described in Sec. II is applied to t
case of diffusion inside two concentric spheres in order
derive explicit expressions for the EISF andC(Q,t). The
single and biexponential approximations forC(Q,t) are con-
sidered subsequently. In Sec. IV we complete this deta
analysis with illustrative examples. Finally, Sec. V contain
brief summary of the paper.

II. INCOHERENT SCATTERING FUNCTION AND
RELAXATION RATE

Consider a particle undergoing a diffusive motion in
potentialV(r ) and assume that the potential is such that th
exists a normalized equilibrium distribution:

Peq~r !5
e2bV(r )

E e2bV(r )dr
, r5~r ,V!, ~2.1!
261 ©2000 The American Physical Society
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262 PRE 62D. J. BICOUT
wherer is the particle position,V stands for polar and azi
muthal coordinates, andb215kBT is the thermal energy
When the potential is of spherical symmetry, i.e.,V(r )
5V(r ), the equilibrium distribution can be factorized a
Peq(r )5Yeq(V)peq(r ), where Yeq(V)51/(4p) is the uni-
form distribution for angular coordinates and

peq~r !5
e2bV(r )

E e2bV(r )r 2dr

. ~2.2!

The dynamics of the particle diffusing in the potential
described by the Green’s function,G(r ,tur0), which is the
probability density of finding the particle at the positionr at
time t given that it was initially atr0. When both the poten
tial and the diffusion are isotropic, the Green’s function
given by ~see the Appendix!

G~r ,tur0!5(
l 50

`

gl~r ,tur 0! (
m52 l

m51 l

Yl
m~V!Yl*

m~V0!,

~2.3!

whereYl
m(•••) are spherical harmonic functions,

gl~r ,tur 0!5
e2b[V(r )2V(r 0)]/2

rr 0
(
n50

`

cn
l ~r !cn*

l~r 0!exp$2Gn
l t%,

~2.4!

and

Gn
l 5H ~qn

l !2D, continuous diffusion

g@12e2(qn
l b)2/2#, jump diffusion,

~2.5!

in which D is the diffusion coefficient,b the jump length,
andg the jump frequency.2(qn

l )2 andcn
l (r ) are the eigen-

values and eigenfunctions of the self-adjoint operator Hl(r )
defined as@see Eq.~A4!#

Hl~r !5
ebV(r )/2

r

d

dr
r 2e2bV(r )

d

dr

ebV(r )/2

r
2

l ~ l 11!

r 2
.

~2.6!

The Green’s function is subjected to the initial conditio
G(r ,t50ur0)5d(r2r0) and has the following properties:

E G~r ,tur0!dr51⇒E gl~r ,tur 0!r 2dr5d l0 , ~2.7a!

lim
t→`

G~r ,tur0!5Peq~r0!⇒ lim
t→`

gl~r ,tur 0!5d l0peq~r 0!,

~2.7b!

E G~r ,tur0!Peq~r0!dr0

5Peq~r !⇒E gl~r ,tur 0!peq~r 0!r 0
2dr0

5d l0peq~r !. ~2.7c!
,

Equation ~2.7a! means that the probability is conserve
~2.7b! reflects the relaxation to the equilibrium distributio
and~2.7c! means that the equilibrium distribution is statio
ary.

The quantity measured in incoherent neutron scatte
experiments is the incoherent dynamic structure factor,

Sinc~Q,v!5
1

pE0

`

I ~Q,t !cos~vt !dt, ~2.8!

where\v is the energy transfer from the neutron beam
the system. The incoherent intermediate scattering funct
I (Q,t), which contains the same information asSinc(Q,v), is
defined as

I ~Q,t !5^eiQ•r (t)e2 iQ•r (0)&

5E dr0E dreiQ•rG~r ,tur0!e2 iQ•r0Peq~r0!,

~2.9!

in which Q is the scattering wave vector of the neutron. F
an isotropic problem~i.e., both the potential and the diffu
sion are isotropic!, the angular coordinates can be eliminat
from the expression ofI (Q,t) as follows. One first expand
eiQ•r as

eiQ•r5 (
k50

`

@4p~2k11!eikp#1/2j k~Qr !Yk
0~V!, ~2.10!

where j k(•••) is the spherical Bessel function of the fir
kind of orderk. These expansions foreiQ•r and Eq.~2.3! are
then plugged back into Eq.~2.9!, and using the orthogonality
property of Yl

m(•••) when performing the operation
*dV0*dV(•••), yield the result

I ~Q,t !5(
l 50

`

~2l 11!E r 0
2dr0E r 2dr j l~Qr !

3gl~r ,tur 0! j l~Qr0!peq~r 0!

5 (
n,l 50

`

An
l ~Q!exp$2Gn

l t%, ~2.11!

in which we have used the expression forgl(r ,tur 0) in Eq.
~2.4!. The amplitudeAn

l (Q) are given by

An
l ~Q!5~2l 11!U E @r 2peq~r !#1/2j l~Qr !cn

l ~r !drU2

.

~2.12!

It is clear from Eq.~2.9! that I (Q,t50)51 but

lim
t→`

I ~Q,t !5A0
0~Q!5U E r 2peq~r ! j 0~Qr !drU2

,

~2.13!

where A0
0(Q), the elastic incoherent structure factor, d

scribes to the spatial structure of the potential. It thus follo
from this thatI (Q,t) can be split into two parts as
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I ~Q,t !5A0
0~Q!1@12A0

0~Q!#C~Q,t !, ~2.14!

whereC(Q,t) is the incoherent scattering correlation fun
tion containing all information about the relaxation dynam
in the potential, i.e., the quasielastic part of neutron scat
ing. This correlation function is defined as

C~Q,t !5
^eiQ•r (t)e2 iQ•r (0)&2u^eiQ•r&u2

12u^eiQ•r&u2

5 (
$n,l %Þ$0,0%

` F An
l ~Q!

12A0
0~Q!

Gexp$2Gn
l t%. ~2.15!

It is clear from this thatC(Q,0)51 and C(Q,t)→0 as t
→`. When Q→0, the scattering correlation function re
duces to the position correlation function defined as

C~0,t !5
^r ~ t !r ~0!&2^r &2

^r2&2^r &2
5

^r ~ t !r ~0!&1

^r 2&
, ~2.16!

with ^r (t)r (0)&15*r 0
2dr0*r 2drrg1(r ,tur 0)r 0peq(r 0) @we

note thatgl(r ,tur 0)5d(r 2r 0)/r 2 andgl(r ,t→`ur 0)50 for
lÞ0.# In the opposite limit ofQ→` ~i.e., for very short
length scales! the boundaries of the system become insign
cant and the particle motion can be described by a bound
free diffusion. In this case,C(Q,t) is a single exponentia
given by

lim
Q→`

C~Q,t !5e2Gt,

G5H Q2D, continuous diffusion

g@12e2(Qb)2/2#, jump diffusion.
~2.17!

In general,C(Q,t) is a nonexponential function of time an
its relaxation time 1/k(Q) is defined through

1

k~Q!
5E

0

`

C~Q,t !dt5 (
$n,l %Þ$0,0%

` F An
l ~Q!

12A0
0~Q!

G 1

Gn
l

.

~2.18!

III. DIFFUSION INSIDE TWO CONCENTRIC SPHERES

We consider now the situation where the particle diffus
within two concentric spheres corresponding to the poten

V~r !5H 2«, 0<r<a

0, a,r<R,
~3.1!

wherea and R are the radii of inner and outer spheres,
spectively. The inner sphere is semipermeable since it is
ergetically more stable than the region comprised betw
the inner and the outer spheres by«>0. In other words,b«
controls the permeability of the inner spherical cage. T
normalized thermal equilibrium distributionpeq(r ) of any
position r is
r-

-
y-

s
al

-
n-
n

e

peq~r !5
e2bV(r )

Z0
0

5
1

R31a3~eb«21!
3H eb«, 0<r<a

1, a,r<R.
~3.2!

A. Elastic incoherent structure factor „EISF…

Using the above expression forpeq(r ) in Eq. ~2.13!, we
find that the EISF for the incoherent scattering law is o
tained as a weighted coherent summation over amplitu
corresponding to subregions as

A0
0~Q!5UfF3 j 1~QR!

QR G1~12f!F3 j 1~Qa!

Qa GU2

, ~3.3!

wheref, the degree of permeability describing the fracti
of equivalent particles considered as mobile within the en
sphere of radiusR, is defined as

f5
R3

a3~eb«21!1R3
. ~3.4!

Whenf50 ~i.e., b«5`) or f51 ~i.e., b«50), Eq. ~3.3!
reduces to the EISF for a particle diffusing inside a sph
@3# of radiusa or R, respectively. On the other hand, whe
«,0 the situation is otherwise, and in theb«→2` limit
the problem reduces to diffusionbetweentwo concentric
spheres@1,6#.

B. General expression of the amplitudes,An
l
„Q…

The computation of the scattering correlation functi
C(Q,t) and of the relaxation rate constantk(Q) requires the
calculation of all the amplitudesAn

l (Q) and hence to deter
mine the eigenvaluesqn

l and eigenfunctionscn
l (r ) of the

operator Hl(r ). To this end, and using the expression f
V(r ) in Eq. ~3.1!, we end up solving the Riccati-Bessel di
ferential equation@7#,

r 2
d2c l

dr2
1@~qlr !22 l ~ l 11!#c l~r !50, rÞa ~3.5!

and subject to the reflecting boundary conditions at edge

d

dr Fc l~r !

r GU
r 50,R

50. ~3.6!

Since the potentialV(r ), as defined in Eq.~3.1!, is discon-
tinuous atr 5a, Eq. ~3.5! has to be solved separately in th
region r<a2 ~inner space! and in the regionr>a1 ~outer
space!. These solutions are next matched using the con
tions

e2b«/2c l~r !ur 5a2
5c l~r !ur 5a1

, ~3.7a!

eb«/2
d

dr Fc l~r !

r GU
r 5a2

5
d

dr Fc l~r !

r GU
r 5a1

. ~3.7b!

In this way we find that the eigenvaluesqn
l are solutions of
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~a12eb«! j 2 l 21~x!

~12a1! j l~x!
5

~ l 11! j 2 l 21~x!1x j2 l~x!

l j l~x!2x j l 11~x!
, ~3.8!

where

a15
@~ l 11! j 2 l 21~y!1y j2 l~y!# j l~x!

@~ l 11! j 2 l 21~y!1y j2 l~y!# j l~x!1@ l j l~y!2y j l 11~y!# j 2 l 21~x!
, ~3.9a!

a25
~12a1! j l~x!

j 2 l 21~x!
, x5qn

l a and y5qn
l R, n50,1,2, . . . . ~3.9b!

The corresponding eigenfunctionscn
l (r ) are given by

cn
l ~r !5

r

@Zn
l #1/2

3H eb«/2j l~qn
l r !, 0<r<a,

a1 j l~qn
l r !1a2 j 2 l 21~qn

l r !, a,r<R,
~3.10!

where normalization constantsZn
l are obtained from the condition,*0

1cm
l (r )cn

l (r )dr5dmn . Note thatq0
050, anduc0

0(r )u2

5r 2peq(r ), wherepeq(r ) is the equilibrium distribution given in Eq.~3.2!.
Now using in Eq.~2.12! the expression ofcn

l (r ) given in Eq.~3.10! and after having evaluated the integrals@7#, we obtain
the following expression for the amplitudes:

An
l ~Q!5~2l 11!uFn

l ~Q!u2, ~3.11a!

Fn
l ~Q!5

1

@Z0
0Zn

l #1/2
3H ~eb«2a1!a3FQa jl 11~Qa! j l~qn

l a!2qn
l a j l 11~qn

l a! j l~Qa!

~Qa!22~qn
l a!2 G

1a1R3FQR jl 11~QR! j l~qn
l R!2qn

l R jl 11~qn
l R! j l~QR!

~QR!22~qn
l R!2 G

1a2R3FQR jl 11~QR! j 2 l 21~qn
l R!2qn

l R j2 l~qn
l R! j l~QR!2~2l 11! j l~QR! j 2 l 21~qn

l R!

~QR!22~qn
l R!2 G

2a2a3FQa jl 11~Qa! j 2 l 21~qn
l a!2qn

l a j2 l~qn
l a! j l~Qa!2~2l 11! j l~Qa! j 2 l 21~qn

l a!

~Qa!22~qn
l a!2 G J . ~3.11b!
s

s

ing
These expressions forqn
l ~i.e., for Gn

l ) andAn
l (Q) can next

be used in Eqs.~2.15! and ~2.18! for determination of the
scattering correlation functionC(Q,t) and its relaxation rate
constantk(Q). However, it may be useful for practical use
to derive approximations ofC(Q,t).

C. Single exponential approximation

Let us consider the expression ofC(Q,t) when Q→0,
i.e., the position correlation function@see Eq.~2.16!#. In this
limit we have 12A0

0(Q);Q2 and the other amplitude
An

l (Q) behave asAn
l (Q);Q2l . It thus follows thatAn

1(Q)
are the only amplitudes contributing toC(Q,t) when Q
→0 so that

C~Q50,t !5 (
n50

` H lim
Q→0

F An
1~Q!

12A0
0~Q!

G J exp$2Gn
1t%

5 (
n50

`

Cn exp$2Gn
1t%, ~3.12!
where

Cn5
5

@R51~eb«2a1!a5#Zn
1~qn

1!8

3u~eb«2a1!@3~qn
1a!2 j 1~qn

1a!2~qn
1a!3 j 0~qn

1a!#

1a1@3~qn
1R!2 j 1~qn

1R!2~qn
1R!3 j 0~qn

1R!#

1a2@3~qn
1R!2 j 22~qn

1R!1~qn
1R!3 j 21~qn

1R!#

2a2@3~qn
1a!2 j 22~qn

1a!1~qn
1a!3 j 21~qn

1a!#u2.

~3.13!

The single exponential approximation consists of replac
the multiexponential expansion~3.12! by
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C~0,t !.exp$2k~0!t% with k~0!5F (
n50

`
Cn

Gn
1G21

,

~3.14!

i.e., the inelastic part ofSinc(Q→0,v) is a Lorentzian. This
appears to be a good approximation of Eq.~3.12! when G0

1

!G1
1,G2

1,••• andC0.1@C1.C2.•••, so that only the
leading term contributes toC(0,t). In this case, the~position!
relaxation rate can be approximated by
c

o

k~0!.G0
15H ~q0

1!2D, continuous diffusion

g@12e2(q0
1b)2/2#, jump diffusion,

~3.15!

where (q0
1)2 is the least~in magnitude! eigenvalue of the

operator H1(r ) defined in Eq.~2.6!. It follows from this that
the position relaxation rate or the reciprocal of the time sc
for the particle to diffuse over the entire allowed space isG0

1.
An approximate expression forq0

1, and hence forG0
1, can be

derived by using the WKB approach to give
l0
15~q0

1R!2.
2

A3
H @2~a/R!n1~n21!~a/R!2n2n21#~12e2b«!12n

@2n~a/R!n122~n11!~a/R!2n2n11#~12e2b«!12n~22n!
J , ~3.16!
ht

ei-

es,
ur-
ers.
r

here

-
qui-
with n5A3. As a check, whenb«50 ~which corresponds to
diffusion inside a sphere of radiusR), Eq. ~3.16! predicts
that l0

1.4.309 which has to be compared with the exa
value 4.333.

D. Biexponential approximation

For small values ofQ but QÞ0, an expression ofC(Q,t)
can also be derived by considering the Taylor expansion
An

l (Q) as a function ofQ. The leading terms contributing t
C(Q,t) are A0

1(Q);Q2, A0
2(Q);Q4 and A1

0(Q);Q4. But
sinceG0

1!G0
2 andG1

0 may be smaller thanG0
2, we only keep

A0
1(Q) andA1

0(Q) in the expansion ofC(Q,t) to give

C~Q,t !.
A0

1~Q!

12A0
0~Q!

exp$2G0
1t%1

A1
0~Q!

12A0
0~Q!

exp$2G1
0t%

.~12Q2A!exp$2G0
1t%1Q2A exp$2G1

0t%,

Q→0, ~3.17!

where the constantA is given by

A5 lim
Q→0

H A1
0~Q!

Q2@12A0
0~Q!#

J
5

5

12@R51~eb«2a1!a5#Z1
0~q1

0!10

3u~eb«2a1!$2~q1
0a!3 j 0~q1

0a!1@~q1
0a!226# j 1~q1

0a!%

1a1$2~q1
0R!3 j 0~q1

0R!1@~q1
0R!226# j 1~q1

0R!%

1a2$2~q1
0R!2 j 21~q1

0R!2@~q1
0R!226# j 22~q1

0R!%

2a2$2~q1
0a!2 j 21~q1

0a!2@~q1
0a!226# j 22~q1

0a!%u2.

~3.18!

The inelastic part ofSinc(Q,v) is thus a bi-Lorentzian in this
approximation.
t

of

Now, setting the expression~3.17! into Eq.~2.18!, we find
that the relaxation rate constant is given by

1

k~Q!
5F A0

1~Q!

12A0
0~Q!

G 1

G0
1

1F A1
0~Q!

12A0
0~Q!

G 1

G1
0

. ~3.19!

The interesting feature of this approximation is to shed lig
on another important eigenvalue of the problem, sayG1

0. In-
deed, for a smooth and barrierless potential surface the
genvalues of Hl(r ) are ordered asq0

050,q0
1,•••,q1

0,•

••, i.e., G0
1,G1

0. In this case,A1
0(Q)!A0

1(Q), the relaxation
rate has a plateaulike behaviork(Q).G0

1, and C(Q,t) re-
duces to a single exponential.

However, one may observe the inversion of eigenvalu
i.e., q0

1.q1
0, in the presence of barriers on the potential s

face and under certain conditions of potential paramet
For the potential in Eq.~3.1!, the potential of mean force o
free energy,F(r ), along the coordinater is F(r )5V(r )
2TS(r ), where the entropy isS(r )5kB ln@(r/R)2# plus a
constant. Thus, the free-energy barrierD, separating the re-
gion between the two concentric spheres and the inner sp
~characterized by«Þ0) is

D5F~a!2F~R!52kBT ln~R/a!. ~3.20!

WhenD.kBT ~i.e., R/a.1.65), the fluctuations of the par
ticle populations in the inner and outer spheres relax to e
librium exponentially with the rate given byG1

0. In this case,
the eigenvalueq1

0 is smaller thanq0
1, i.e., G1

0,G0
1. As a re-

sult,k(Q) starts from a plateau value close toG0
1 for smallQ

where A1
0(Q)!A0

1(Q), decreases to its minimum atQm,
turns over and increases asQ gets larger. In this limit,
C(Q,t) decays at long times with rateG1

0 such that

G1
05 lim

t→`
H 2

d

dt
ln@C~Q,t !#J

5H ~q1
0!2D, continuous diffusion

g@12e2(q1
0b)2/2#, jump diffusion,

~3.21!
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where (q1
0)2 is the least~in magnitude! eigenvalue of the

operator H0(r ) defined in Eq.~2.6!.
However,C(Q,t) decays at short times as

2
dC~Q,t !

dt U
t50

5A0
1~Q!G0

11A1
0~Q!G1

0 . ~3.22!

This rate constant~which is greater thanG1
0 and dominated

by G0
1) can roughly be regarded as the position relaxat

rate over length scales defined byQ21<R. It thus follows
from this that within the biexponential approximatio
C(Q,t) decays faster at short times with theQ-dependent
position relaxation rate, and it decays at long times with
population relaxation rate.

WhenD.kBT, an analytical expression of (q1
0)2 in term

of quadratures can be derived by using the first passage
formalism @8,9#. After calculations, we find

1

~q1
0!2

5
a2

15S Keq

11Keq
D

1
~R2a!2~5R316aR213a2R1a3!

15a~R21aR1a2!
S 1

11Keq
D ,

~3.23!

where Keq5@*a
Rr 2e2bV(r )dr#/@*0

ar 2e2bV(r )dr#5(R3

2a3)e2b«/a3 is the equilibrium constant between the pop
lation of particles in the region comprised between the in
and outer spheres and that in the inner sphere. It is wo
while to note that ift in andtout denote the average times
particle spends within and out the inner sphere, respectiv
we haveKeq5tout/t in andG1

0.t in
211tout

21 .

IV. ILLUSTRATIVE NUMERICAL RESULTS

Now, we complete the analytical results derived abo
with some illustrations obtained from numerical calculatio

Elastic incoherent structure factor.Figure 1 displays the
EISF @i.e., the amplitudeA0

0(Q)# for diffusion inside two
concentric spheres of radiia andR55a for various values of
the fractionf. Excepted forf51, it is seen thatA0

0(Q)
becomes very small atQa.4.49 for all fractions. Whenf
goes fromf50 to f51 or conversely, the shape of th
EISF changes and becomes very different from that o
single sphere as a result of interferences between the
spheres. Forf50.5, there is even a small window ofQ
within which the EISF shows a plateaulike behavior. The
features cannot be fitted with neither a diffusion inside
effective single sphere@3# nor inside a cylinder@10#. The
other amplitudesAn

l (Q) are shown in Fig. 2 forR55a and
f50.5. In contrast to a single sphere case@3#, the maximum
of the next amplitudes toA0

0(Q) are about 30% smaller tha
one.

Amplitudes A0
1(Q) and A1

0(Q). Comparison between
A0

1(Q) andA1
0(Q) is shown in Fig. 3. It can be seen that th

maximum ofA0
1(Q), located atQa.0.5, increases asf in-

creases and bumps up to 0.5 for the single sphere c
A0

1(Q);Q2 as Q→0, and it becomes almost zero forQa
>1.25.
n
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In contrast toA0
1(Q), whenf increases the maximum o

A1
0(Q), located aroundQa;1, decreases towards its sing

sphere value 0.075. Apart for smallQ where A1
0(Q);Q4,

A1
0(Q) and A0

0(Q) have roughly the same shape and bo
become very small atQa.4.49 forf,1.

Moreover, we emphasize that whenf increases the maxi
mum of A0

1(Q) decreases while the maximum ofA1
0(Q) in-

creases and the two maxima becomes of the same ord
magnitude atf50.5 for R55a. This opposite behavior o
the maximum ofA0

1(Q) and A1
0(Q), also noticeable on the

corresponding eigenvalues~see below!, results from interfer-
ences between inner and outer spheres.

Inversion of least eigenvalues q0
1 and q1

0. The effect of the
presence of a semipermeable inner sphere on the eigenv
spectrum is illustrated in Table I. One can see that both
order and the orders of magnitude of eigenvalues are c
pletely shuffled compared to the single sphere case~i.e., f
51). Let us focus now on the two first eigenvalues.
discussed above, the position relaxation time is related to
eigenvalueq0

1 and the relaxation to equilibrium in fluctua
tions of the population between inner and outer sphere
the eigenvalueq1

0.
Figure 4~a! shows the variation ofl0

15(q0
1R)2 as a func-

tion of the ratio of radii,a/R, for various fractionsf. It
appears thatl0

1 is very sensitive to the size of spheres forf
smaller or of order 0.5, and it is maximum arounda/R
;0.6, i.e., for barriersD;kBT. One can note thatl0

1 is
always larger or equal to the single sphere value 4.3, me
ing that the position correlation function relaxes faster in
presence of an additional partially confining inner sphe
The dashed lines over numerical data on Fig. 4~a! indicates
that the formula in Eq.~3.16! gives a reasonably good ap
proximation tol0

1 for D.kBT andf>0.5.
Comparison betweenq0

1 and q1
0 is shown in Fig. 4~b!

where dashed lines separate two regions of relaxation
namics. One is the region whereq0

1,q1
0 ~i.e., u.1) corre-

FIG. 1. The elastic incoherent structure factor~EISF! A0
0(Q)

@given in Eq.~3.3!# as a function ofQa for various values of frac-
tions:f50 ~solid line!, f50.25~long-dashed line!, f50.5 ~dotted
line!, f50.75~dashed line!, andf51 ~dot-dashed line!. The solid
(f50) and dot-dashed lines (f51) correspond to the EISF for a
sphere of radiusa andR, respectively.
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FIG. 2. The amplitudesA0
l (Q) @panel~a!# andA1

l (Q) @panel~b!# @given in Eqs.~3.11a! and~3.11b!#, as a function ofQa for the fraction
f50.5. The quoted numbers correspond to values ofl. Note the difference in the order of magnitude betweenA0

l (Q) andA1
l (Q).
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sponding to either when the radii of spheres are compar
~i.e., D;kBT) or when the fraction of particles in the oute
sphere is close to one~i.e., f.0.5). In this case the problem
can be approximated by the diffusion inside an effect
single sphere different from the outer sphere since it is
possible to haveq0

1,q1
0,q2

0 ~see Table I!. We call this the
normal region because of the resemblance to the si
sphere case. The amplitudeA0

1(Q) is much larger than
A1

0(Q) and the only characteristic time is the position rela
ation time related toq0

1.
By opposition to the normal region, second is the inver

region whereq0
1.q1

0 ~i.e., u,1) corresponding to the situa
tion in which either the radii of spheres are very differe
from each other~i.e.,D.kBT) or a large fraction of particles
is contained in the inner sphere~i.e., f,0.5). Figure 4~b!
shows that (q1

0/q0
1)2}e2bD in this range. In this case, th

amplitudeA1
0(Q) is greater than or of order thanA0

1(Q) and
the relaxations of position and population between sphe
compete as a function ofQ to the overall relaxation@i.e.,
depending on the value ofQ, C(Q,t) may be either a single
le

e
ll

le

-

d

t

es

exponential or a biexponential function of time, see Fig.#.
Scattering correlation function and relaxation rate.Fig-

ures 5~a! and 5~b! show a comparison of the incoherent sc
tering correlation function,C(Q,t), for diffusion inside a
single sphere and two concentric spheres. ForQR<0.1 ~i.e.,
for large length scales!, C(Q,t) for the single sphere cas
decays exponentially with the rate constantk(Q).G0

1 since
dominated by the relaxation of the position. AsQR in-
creases,C(Q,t) in the single sphere case becomes multie
ponential as a result of an increasingly number of harmon
contributing toC(Q,t). This latter tends to a single expone
tial again at higherQR ~very short length scales! where the
number contributing harmonics tends to infinity.

In the case of two concentric spheres,C(Q,t) also decays
exponentially with the rate constantk(Q).G0

1 for QR<0.1
because the amplitudes other thanA0

1(Q) are too small to
contribute so that the single exponential approximation
justified. On the other hand,C(Q,t) exhibits a biexponentia
decay as a function of time for intermediate values ofQR
where the amplitudes likeA1

0(Q) are of the same order o
FIG. 3. The amplitudesA0
1(Q) @panel~a!# andA1

0(Q) @panel~b!# as a function ofQa. The quoted numbers correspond to values off.
Note the different scales of thex axis between the two panels.
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magnitude thanA0
1(Q). The short-time decay rate is given b

the position relaxation rate over length scales under con
eration and the long-time decay rate by the population re
ation rateG1

0. This corresponds to the inverted region on F
4~b! where G1

0,G0
1, i.e., the relaxation of the position fo

these length scales occurs faster than the relaxation to e
librium in fluctuations of population between spheres. A
consequence, for the same length scales under consider
the overall decay ofC(Q,t) for two concentric spheres i
smaller than that for the single sphere case.

Likewise, comparison of the relaxation rate,k(Q), for
diffusion inside a single sphere and two concentric sphere
shown in Fig. 6. Apart from oscillations resulting from inte
ferences, the value ofk(Q) at low QR is slightly greater for
the two concentric spheres than that for the single sph
case. The plateaulike behavior ofk(Q) for the two concen-

TABLE I. The first 11 roots in ascending order of Eq.~3.8! for
R55a ~i.e., for D53.22kBT) and f50.5 ~i.e., for «54.84kBT),
where (qn

l )2 are the eigenvalues of the diffusion operator. Fro
Eqs.~3.16! and~3.23! we find thatl0

155.07 andl1
051.81, respec-

tively. The columnf51 corresponds to eigenvalues for diffusio
inside a sphere of radiusR; the number in parentheses gives th
order. Note the inversion of order forf50.5, i.e.,q0

1.2.6q1
0.

n l ln
l 5(qn

l R)2

f50.5 f51

0 0 0.0000 0.0000(0)
1 0 1.7558 20.191(3)
0 1 4.5394 4.3330(1)
0 2 11.185 11.170(2)
0 3 20.342 20.377(4)
0 4 31.822 31.885(5)
2 0 32.534 59.680(9)
1 1 39.880 35.288(6)
0 5 45.559 45.650(7)
1 2 54.473 53.143(8)
0 6 61.516 61.639(10)
d-
x-
.

ui-
a
ion,

is

re

tric spheres goes further inQR values similar to diffusion
inside a cylinder@10#. For the cylinder, this extension o
k(Q) is attributed to the anisotropy of the cylindrical shap
For the two concentric spheres, the anisotropy arises f
cross transitions between the inner and outer spheres. In
dition to this, k(Q) for the two concentric spheres has
turnover behavior as a function ofQ with a minimum atQm
as an indication of the inversion of the least eigenvalu
This inversion of least eigenvalues is also noticeable
C(Q,t) since, as for the example shown in Fig. 5~b!, C(Q,t)
is exponential forQR50.1 and biexponential forQR55
while the relaxation ratek(Q) is exactly the same for the two
values ofQR ~with QmR.3.2). The analysis shows that fo
intermediate values ofQR, C(Q,t) is well described by a
single exponential forQ,Qm while it is a biexponential
function of time forQ.Qm .

As expected, for the two cases of single sphere and
concentric spheres, the differences inC(Q,t) andk(Q) be-
tween the continuous and jump-diffusion models appear o
at higherQ, i.e., for very short length scales.

V. SUMMARY

As an extension to the diffusion inside a sphere model
have considered the problem of diffusion inside two conc
tric spheres as a model for diffusing motions within a clos
region or cage containing another semipermeable cage
divides the system into two subregions. Our aim has bee
derive the EISF and the incoherent scattering correla
function C(Q,t) for this model of diffusion inside two con
centric spheres. The main results of calculations, which h
been done for both continuous and jump diffusions, can
summarized as follows.

The EISF@i.e., the amplitudeA0
0(Q)# is characterized by

three parameters: the radiusa of the semipermeable inne
sphere, the radiusR of the outer sphere, and the degree
permeabilityf which describes the fraction of equivale
particles diffusing in the outer sphere. As a result of interf
ences between spheres, we find that the EISF is a weig
coherent summation over amplitudes corresponding to in
and outer spheres.
FIG. 4. Eigenvaluel0
15(q0

1R)2 @panel~a!# and the log-log plot of the ratiou5(q0
1)2/(q1

0)2 as a function ofa/R. The quoted numbers
correspond to values off. The dashed lines in panel~a! represent the approximation in Eq.~3.16! for f50.5 and 0.9.
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FIG. 5. Correlation functionC(Q,t) as a function of the reduced timek(Q)t, wherek(Q) is the relaxation rate constant. The quot
numbers correspond to values of the scattering wave vectorQR. k(Q)5Dkcd/R2 for the continuous diffusion~solid lines! with diffusion
coefficient D, and k(Q)5gkjd for the jump diffusion~dashed lines! with the jump lengthb50.15R and jump frequencyg52D/b2

.89D/R2. ~a! Diffusion inside a sphere of radius R with the relaxation rate constants (QR,kcd,kjd)
5$(0.1,4.36,4.25);(5,16.55,15.08);(10,80.35,52.45)%. ~b! Diffusion inside two concentric spheres of radiia and R55a for f50.5. The
relaxation rate constants are (QR,kcd,kjd)5$(0.1,4.74,4.61);(5,4.73,4.60);(10,14.49,13.21)%. For comparison, the position and populatio
relaxation rates are (G0

1 ,G1
0).(4.54,1.76)3D/R2 for both continuous and jump diffusions. The equilibrium constant between inner

outer populations isKeq5tout /t in50.98 and the inner residence time ist in.1.153R2/D;303a2/D.
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WhenQ→0 ~i.e., forQR,0.1), the incoherent scatterin
correlation function decays exponentially as a function
time with the rate given by the position relaxation ra
k(0)5G0

1 @see Eq.~3.15!#. In the oppositeQ→` limit ~i.e.,
for QR.10), C(Q,t) has also an exponential decay as
function of time as given in Eq.~2.17!. For intermediate
values ofQR, however, there are two types of decay f
C(Q,t) depending upon the ratio of radiiR/a @i.e., the en-
tropic barrier,D, see Eq.~3.20!# and the fractionf.

In the normal region~i.e., R/a;1.6⇒D;kBT and/orf
;1), the problem can be approximated by a diffusion ins
an effective single sphere which the radius can be de
mined from the EISF. In this case,C(Q,t) can be approxi-
f

e
r-

mated by a single exponential with the ratek(Q);G0
1 for

QR,p. For higher values ofQR, C(Q,t) becomes multi-
exponential because of the contribution of higher harmon

In the inverted region~i.e., R/a.1.6⇒D.kBT and/or
f<0.75) on the other hand,k(Q) shows a turnover behavio
as a function ofQ with a minimum atQm . For Q,Qm , the
correlation functionC(Q,t) is well described by a single
exponential whereas it is a biexponential function of time
Q.Qm . In this latter case, the short-time decay rate
C(Q,t) is controlled by the position relaxation rate ov
length scalesQ21 and the long-time decay rate by the pop
lation relaxation rateG1

0 @see Eq.~3.21!#. For these values o
QR, the relaxation of the position occurs faster than the
FIG. 6. Reduced relaxation rate constantsR2k(Q)/D ~continuous diffusion, solid lines! andk(Q)/g ~jump diffusion, dashed lines! as a
function of (QR)2. ~a! Diffusion inside a sphere of radiusR ~i.e., f51) and inside two concentric spheres of radiia and R55a (f
50.5). For the jump diffusion, the jump length isb50.15R and the jump frequencyg52D/b2.89D/R2. ~b! Zoom of panel~a! showing
the turnover behavior ofk(Q) for f50.5. The coincidence between quoted curves~i.e., solid-solid and dashed-dashed lines! occurs at
QR51.36 whereR2k(Q)/D54.65 andk(Q)/g54.53, and the minimum is located atQmR.3.25.
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laxation to equilibrium in fluctuations of population betwe
spheres. The biexponential behavior ofC(Q,t) takes place
up to higher values ofQR like, for example,QR;10 for
R55a ~i.e., D53.2kBT) andf50.5 @see Fig. 5~b!#.

Finally, the model discussed in this paper is essential
simple example of motions in a confining potential with ba
rier crossing. The foregoing analysis outlines what kind
information one can get by using the incoherent neutron s
tering technique to study this problem. The model can
extended to include, for example, anisotropic effects, mu
domain systems, or to deal with situations where the dif
sion rates are different in each subregion. In addition,
though the discussion was presented for the translati
diffusion this model can properly be adapted and applied
well to other degrees of freedom like rotation and vibratio
It may be instructive to investigate also in these direction
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APPENDIX: GREEN’S FUNCTIONS FOR CONTINUOUS
AND JUMP-DIFFUSION MODELS

In this appendix we derive formal expressions for Gree
functions, G(r ,tur0), describing the particle diffusion in a
potentialV(r ). To this end, we consider the two diffusio
models commonly used for the derivation ofG(r ,tur0).

1. Continuous diffusion model

When the particle motion can be described as a cont
ous diffusion, the probability density,G(r ,tur0), satisfies the
Smoluchowski equation

]G

]t
5“•D~r !e2bV(r )

•“ebV(r )G, ~A1!

whereD(r ) is the diffusion tensor which we will assume
be a constant tensor independent ofr . When both the poten
tial and the diffusion are isotropic,G(r ,tur0) can be ex-
panded in terms of spherical harmonic functionsYl

m(V) as

G~r ,tur0!5(
l 50

`

gl~r ,tur 0! (
m52 l

m51 l

Yl
m~V!Yl*

m~V0!,

~A2!

where the functiongl(r ,tur 0) satisfies the Smoluchowsk
equation in the presence of an angular momentum sink
term,

]gl

]t
5F 1

r 2

]

]r
r 2De2bV(r )

]

]r
ebV(r )2

l ~ l 11!

r 2 Ggl . ~A3!

Using the transformation, gl(r ,t)
5e2(ql )2Dte2bV(r )/2c l(r )/r , Eq. ~A3! reduces to the eigen
value problem

Hl~r !c l~r !52~ql !2c l~r !, ~A4!
a
-
f
t-
e
i-
-
l-
al
s
.
.

ir

s

u-

e

where the autoadjoint operator Hl(r ) is given by

Hl~r !5
ebV(r )/2

r

d

dr
r 2e2bV(r )

d

dr

ebV(r )/2

r
2

l ~ l 11!

r 2
.

~A5!

Let qn
l and cn

l (r ) be the eigenvalues and eigenfunctions
the operator Hl(r ), the Green’s function of the diffusion
equation~A3! is thus given by

gl~r ,tur 0!5
e2b[V(r )2V(r 0)]/2

rr 0
(
n50

`

cn
l ~r !cn*

l~r 0!

3exp$2~qn
l !2Dt%, ~A6!

with q0
050 andr 2peq(r )5uc0

0(r )u2. As a result, for a purely
isotropic diffusion problem with a constant diffusion coef
cient, the Green’s functionG(r ,tur0) is given by Eq.~A2!
with gl(r ,tur 0) defined in Eq.~A6!.

2. Random jump-diffusion model

As introduced in this context by Hall and Ross@4#, in this
model one assumes that the particle undergoes succe
uncorrelated jumps from site to site governed by the spa
probability distribution,r(r ,1ur0), of finding the particle atr
after a single jump given that it was initially atr0. Jumps are
assumed to be statistically independent events of zero d
tion and the time interval between successive jumps i
random variable obtained from the distribution,ge2gt,
whereg is the jump frequency. For this jump diffusion, th
probability density,G(r ,tur0), satisfies the integral equatio

G~r ,tur0!5r~r ,0ur0!e2gt

1E dr 8E
0

t

dtge2g(t2t)r~r ,1ur 8!G~r 8,tur0!.

~A7!

This can be rewritten in an infinite series of the form

G~r ,tur0!5 (
m50

`
~gt !m

m!
e2gtr~r ,mur0!, ~A8!

wherer(r ,mur0), the probability density of finding the par
ticle at r after am jumps given that it was initially atr0, is
such thatr(r ,m11ur0)5*dr 8r(r ,1ur 8)r(r 8,mur0). For the
purpose of the model, it is convenient to assume that
large m, the spatial probability distributionr(r ,mur0) satis-
fies the diffusion equation

]r

]m
5“•B~r !e2bV(r )

•“ebV(r )r, ~A9!

whereB(r ) is the jump length tensor which we will assum
to be a constant tensor independent ofr . As for the continu-
ous diffusion, when both the potential and the jump eve
are isotropic, the functionr(r ,mur0) can be expanded in
terms of spherical harmonic functionsYl

m(V) as
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r~r ,mur0!5(
l 50

`

r l~r ,mur 0! (
m52 l

m51 l

Yl
m~V!Yl*

m~V0!,

~A10!

wherer l(r ,mur 0), satisfies the diffusion equation

]r l

]m
5F 1

r 2

]

]r
r 2

b2

2
e2bV(r )

]

]r
ebV(r )2

l ~ l 11!

r 2 Gr l ,

~A11!

in which we have used 2B5b2d i j , where b is the jump
length. This equation is identical to Eq.~A3! with the corre-
spondence 2Dt5b2m. It thus follows from what precede
that

r l~r ,mur 0!5
e2b[V(r )2V(r 0)]/2

rr 0
(
n50

`

cn
l ~r !cn*

l~r 0!

3exp$2~qn
l b!2m/2%, ~A12!
H

whereqn
l andcn

l (r ) are the eigenvalues and eigenfunctio
of the operator Hl(r ) defined in Eq.~A4!. Combining Eqs.
~A10! and~A12! into Eq.~A8!, we find that for the isotropic
jump-diffusion model, the Green’s functionG(r ,tur0) is still
given by Eq.~A2! but with gl(r ,tur 0) given by

gl~r ,tur 0!5 (
m50

`
~gt !m

m!
e2gtr l~r ,mur 0!

5
e2b[V(r )2V(r 0)]/2

rr 0
(
n50

`

cn
l ~r !cn*

l~r 0!

3exp„2$12exp@2~qn
l b!2/2#%gt….

~A13!

In the b→0 limit, Eq. ~A13! coincides with Eq.~A6! for
b2g52D.
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