PHYSICAL REVIEW E VOLUME 62, NUMBER 1 JULY 2000

Incoherent neutron scattering functions for diffusion inside two concentric spheres
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We consider the diffusion of a particle inside two concentric spheres as a model for diffusing motions inside
and between two semipermeable subregions or sublayers of a confining region. Analytic expressions for the
elastic incoherent structure fact@ISF and the incoherent scattering correlation functi@iQ,t), are de-
rived for this model. It is found that, as a result of interferences between regions, the EISF is a weighted
coherent summation over amplitudes corresponding to subregions and the relaxation Cé@,f has a
turnover behavior with a minimum &,,. In addition to the single exponential behavior @ Q,,, C(Q,t)
also shows a biexponential decay as a function of time for intermediate val@s Qf,,. The rate of decay
at short times is related to diffusion over length scales under consideration while at long times it is given by the
relaxation to equilibrium in fluctuations of population between subregions.

PACS numbeps): 02.50.Ey, 66.10.Cb, 87.15.He

I. INTRODUCTION the particle to diffuse over the entire sphere. Similar results
were derived by Hall and Rod¢l]| for the jump-diffusion

Incoherent neutron scattering from single-particle hydro-motions in a segment and a cube. All these results have been
gen atoms provides a means for investigating motions o$ubsequently used, for example, to study the dynamics of
atoms, molecules, chemical species, or macromolecules ivater molecules on the surface of proteins as done by
liquids, crystals, or powdeifd]. In this technique, the spatial Bellissent-Funekt al. [5] with an extension to account for
and temporal information on the particle motions are ob-the presence of immobile particles.
tained from the incoherent scattering functi@{Q,w), In this paper we consider the situation where particles
which describes the distributions of the scattering wave vecdiffuse within a large closed region or cage containing an-
tor Q and energy transférw. In the Born approximation the other semipermeable cage that divides the system into two
functionS(Q, w) is related by the double Fourier transforma- subregions. For simplicity, we consider spherical symmetric
tion in space and time to the Van Hove self-correlation func-cages that fit together and model the problem by the diffu-
tion [2], G(r,t|ry), which describes the correlations betweension of a particle inside two concentric spheres with the inner
positions of one and the same particle at different times, i.e sphere(of smaller siz¢ having a semipermeable surface and
the probability density of finding the particle at the position the outer ongof larger siz¢ an impermeable surface, i.e.,
at timet conditional that it was initially at, (in general,r confining. Our goal is to derive for this model the analytical
andr, describe many degrees of freedom, such as transl&xpressions and approximations for the EISF and the inco-

tion, rotation, . . ., but forsimplicity we will be concerned herent scattering correlation functi@(Q,t) which carries
only with the translation For a particle diffusing in a poten- the same information as the inelastic partSQ, w).
tial V(r) due to interactions with its environme@(r,t|r,) The outline of the paper is as follows. Section Il and the

is the Green’s function of the diffusion equation describingAppendix introduce notations, describe the general formal-

the particle dynamics. From a theoretical standpoint, this isism, and define the relevant quantities to be calculated. In

however, a rather difficult task of determining the Green'sSec. lll the formalism described in Sec. Il is applied to the

function and hence computing the incoherent scattering fungcase of diffusion inside two concentric spheres in order to

tion for diffusion in an arbitrary potential. derive explicit expressions for the EISF a@{Q,t). The
However, for many physical situations of interests like single and biexponential approximations ©fQ,t) are con-

molecules at surfaces, in micellar systems, or in vesicles angidered subsequently. In Sec. IV we complete this detailed

structural cages, the interacting system can be modeled byanalysis with illustrative examples. Finally, Sec. V contains a

geometrically confining potential(r) and the problem re- brief summary of the paper.

duces to diffusion of a particle in a bounded space. For these

situations, there is, for instance, the model of diffusion inside

a sphere with an impermeable surface for which the analyti-  1l. INCOHERENT SCATTERING FUNCTION AND

cal expressions 05(Q,w) have been previously calculated RELAXATION RATE

by Volino and Dianoux 3] for the continuous diffusion. The Consid ticl d . diffusi tion i

main features of the model are that the elastic incoherent ~°N>ICer @ particie undergoing a dilfusive motion in a

structure factoEISF) provides the single confining length po_tent|aIV(r) an_d assume that the_ po_tenfua|.|s such that there

(i.e., the sphere radiuisand the almost Lorentzia8(Q,w) exists a normalized equilibrium distribution:

[or equivalently, the exponential incoherent scattering corre-

lation functionC(Q,t)] is characterized by the time scale for o AV

Peq(r)zf—, r=(r,Q), (2.1

. . . e AVdr
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wherer is the particle position{) stands for polar and azi- Equation (2.79 means that the probability is conserved,
muthal coordinates, ang@ *=kgT is the thermal energy. (2.7b reflects the relaxation to the equilibrium distribution,
When the potential is of spherical symmetry, i.®(r)  and(2.79 means that the equilibrium distribution is station-
=V(r), the equilibrium distribution can be factorized as, ary.

Pedr) =Yed Q) Pedr), Where Y (Q)=1/(4m) is the uni- The quantity measured in incoherent neutron scattering
form distribution for angular coordinates and experiments is the incoherent dynamic structure factor,
e_ﬁv(r) _ 1 °°I d o8
Pedl) =7 (2.2 Sind Q)= — . (Q,t)cog wt)dt, (2.9

f e AVr2gr

wherefw is the energy transfer from the neutron beam to
the system. The incoherent intermediate scattering function,
I(Q,t), which contains the same information@s(Q, ), is
defined as

The dynamics of the particle diffusing in the potential is
described by the Green’s functio®(r,t|rg), which is the
probability density of finding the particle at the positiormat
time t given that it was initially ar,. When both the poten- 1(Q,t) = (elQ T(Dg1Q(0)y
tial and the diffusion are isotropic, the Green’s function is '

given by (see the Appendjx . _
=J droJ dre'Q"G(r,t|ro)e*'Q'VOPeq(ro),
m=+1

G(r,tro)=2, gi(r,tlre) > YM(Q)YF™(Qo), 2.9
1=0 m=—1|

2.9 in which Q is the scattering wave vector of the neutron. For
an isotropic problenti.e., both the potential and the diffu-

whereY["(- - -) are spherical harmonic functions, sion are isotropig the angular coordinates can be eliminated
from the expression dof(Q,t) as follows. One first expands
e AV = | 60" as
ai(r tro)= > () (rojexp(— Tt}
rro n=0 o0
(2.4

eiQ'f=k§_)0 [4m(2k+1)e* Y%, (QrYY(Q), (2.10
and
| ) o where j(---) is the spherical Bessel function of the first
(gn)°D,  continuous diffusion kind of orderk. These expansions f&? " and Eq.(2.3) are
= 29 then plugged back into E¢2.9), and using the orthogonality
property of Y{"(---) when performing the operation,
JdQefdQ(- ), yield the result

rl=
"y 1—e @®2) jump diffusion,

in which D is the diffusion coefficientp the jump length,
and y the jump frequency.—(q'n)2 and z,/;'n(r) are the eigen-

values and eigenfunctions of the self-adjoint operatdrH 1(O.1)= 21+1 J' 24 j 24ri
defined agsee Eq(Ad)] Q=2 (21+1) | rgdro | rdrj;(Qr)

BV(1)/2 BV(r)/2 X (r,t[ro)j1(Qro)Ped o)
I A i 8 7 104D .
rdr dr r r2

Hi(r)=

2.6 = 3 AQuexp~ T}, 2.19)

The Green’s function is subjected to the; initial cor?dition,in which we have used the expression &r,t|ro) in Eq.
G(r,t=0|ry)=48(r—ry) and has the following properties: (2.4). The amplitudeﬁ\'n(Q) are given by

J G“'t“o)dr:l:'f9'“‘“0”2“:5'0’ @73 AL<Q>=<2|+1>U[rzpeqm]“ﬁ'|<Qr>¢'n<r>dr2
. . (2.12
im G(r,t|ro) =Pedro)=limgy(r,t|ro) = dioPed M o),
t—oo t—o It is clear from Eq.(2.9) thatl(Q,t=0)=1 but
(2.7b
2
f lim |(Q,t)=A8(Q)=Urzpeq(r)jo(Qr)dr :
G(r,t|rg)Pefro)drg toe
(2.13
:Peq(r):f gl(r,t|ro)pe,{ro)r§dro where A8(Q), the elastic incoherent structure factor, de-

scribes to the spatial structure of the potential. It thus follows
= SjoPed(1)- (2.79  from this thatl (Q,t) can be split into two parts as
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[(Q1)=A3(Q)+[1-AJQ)IC(Q,t),  (2.19

whereC(Q,t) is the incoherent scattering correlation func-

tion containing all information about the relaxation dynamics

INCOHERENT NEUTRON SCATTERING FUNCTIONS F®. ..

263
e AV 1 ef*, O<r=<a
r= = X
Ped ™) 70 R3+adef-1) (1, a<r=<R
(3.2

in the potential, i.e., the quasielastic part of neutron scatter-

ing. This correlation function is defined as

<eiQ~r(t)e—iQ~r(O)> _ |<eiQ~r>|2

C(Q.H)=

1_|<eiQ~r>|2
< ALQ)
- —=lexp{-Tht}. (2.
1700 [ 1-AYQ) exp{— Loty (219

It is clear from this thatC(Q,0)=1 and C(Q,t)—0 ast
—o., When Q—0, the scattering correlation function re-
duces to the position correlation function defined as

(r(Or(©)—(r)* (r(tr(0))
(r2)=(r)? (r?)

with  (r(t)r(0)),=/rodrofr?drrga(r.t|ro)ropeqro) [we
note thatg,(r,t|ro)=8(r —ro)/r? andg,(r,t—o|ry) =0 for
[#0.] In the opposite limit ofQ— (i.e., for very short
length scalesthe boundaries of the system become insignifi-

C(ot)=

(2.16

cant and the particle motion can be described by a boundar)}

free diffusion. In this caseC(Q,t) is a single exponential
given by

lim C(Q,t)=e" ",
Q—x

continuous diffusion

Q2D1
y[1—e @*2]  jump diffusion.

(2.17

|

In general,C(Q,t) is a nonexponential function of time and
its relaxation time K(Q) is defined through

o0

1
I‘_In.
(2.18

ALQ)
1-A3(Q)

L—Jmc Hdt=
k(@) ), C(Qbdt=

{n,1}#{0,0

IIl. DIFFUSION INSIDE TWO CONCENTRIC SPHERES

We consider now the situation where the particle diffuse
within two concentric spheres corresponding to the potenti

=

=

=<

=

0
a<r=R,

—g, r<a

V(r)=

0. (3.2

wherea and R are the radii of inner and outer spheres, re-

A. Elastic incoherent structure factor (EISF)

Using the above expression fpr(r) in Eq. (2.13, we
find that the EISF for the incoherent scattering law is ob-
tained as a weighted coherent summation over amplitudes
corresponding to subregions as

3j1(QR)
QR

2

3j1(Qa)
Qa

(3.3

A8(Q)=M +<1—¢>[

where ¢, the degree of permeability describing the fraction
of equivalent particles considered as mobile within the entire
sphere of radiu®, is defined as

RB
ad(efr—1)+R3

(3.9

When ¢=0 (i.e., Be=») or ¢=1 (i.e., Be=0), Eq.(3.3
reduces to the EISF for a particle diffusing inside a sphere
[3] of radiusa or R, respectively. On the other hand, when
e<0 the situation is otherwise, and in this — — o limit

he problem reduces to diffusiobetweentwo concentric
sphereg1,6].

B. General expression of the amplitudesA! (Q)

The computation of the scattering correlation function
C(Q,t) and of the relaxation rate constd{Q) requires the
calculation of all the amplitudeA'n(Q) and hence to deter-
mine the eigenvalues!, and eigenfunctionsy!(r) of the
operator H(r). To this end, and using the expression for
V(r) in Eqg. (3.1), we end up solving the Riccati-Bessel dif-
ferential equationi7],

21
,d

dr? 39

r+a

r +[(a'n2=1(1+1)]¥'(r)=0,

and subject to the reflecting boundary conditions at edges

=3

d
dr

)

r

=0.
0R

(3.6

r=

%ince the potentiaV/(r), as defined in Eq(3.1), is discon-
Hinuous atr =a, Eq. (3.5 has to be solved separately in the

regionr<a_ (inner spacgand in the regiomr=a, (outer
space. These solutions are next matched using the condi-
tions

spectively. The inner sphere is semipermeable since it is en-

ergetically more stable than the region comprised betwee
the inner and the outer spheres 43¢ 0. In other wordsBe

controls the permeability of the inner spherical cage. The

normalized thermal equilibrium distributiope(r) of any
positionr is

eﬁﬁs/2¢|(r)|r=a,=wl(r)|r=a+r (3.7a
n L d [P d[y'r)
eﬁlza[T} r_a_:a[ . } (3.7b

r=a,

In this way we find that the eigenvaluq# are solutions of
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(a1 =€)j1-1(x)  (I+1)j1-1(x)+xj_1(x)

T a0 00 —Xi1109 (39
where
o [(+1)j -2 FYi(W11i(X) (3.93
VLD YWD T =YD i —i-1(%) '
a2=w, x=gia and y=q\R, n=012.... (3.9
J-1-1(%)
The corresponding eigenfunctiomﬁ(r) are given by
| e®%j (qlr), O=r=a,

Pn(r)= (3.10

— X ) .
[Z,]%2 aj (Qhr) +azj__q(qir), a<r<R,

where normalization constanﬁ are obtained from the conditiorj(l)lan(r)lﬁL(r)dr:5mn. Note thatq8=0, and|¢8(r)|2
=r2peq(r), wherepe{r) is the equilibrium distribution given in Eq3.2).

Now using in Eq.(2.12 the expression oﬁ/'n(r) given in Eq.(3.10 and after having evaluated the integrigl$ we obtain
the following expression for the amplitudes:

ALQ)=(2I+1)[FL(Q)|?, (3.113
Qaj+1(Qa)j (gha)—ghaji+1(qha)j,(Qa)
(202, 1Y (Qa)?—(gya)?
QRji+1(QR)j (ahR) — ahRji+ 1(AhR)j (QR)
(QR?=(q\R)?
QRji+1(QR)j —1-1(4nR) =R (AhR)j I (QR — (21 + 1)} (QR)j - 1(AhR)
(QR?—(q\R)?
Qaj|+1(Qa>j_|_1<qLa>—q'naj_|(q'na>j|(Qa>—<2|+1>j|(Qa>j_|_1(q'na>“
(Qa)®—(qha)? '

Fl(Q)= x[(eﬂa—aneﬁ

R3

ay

R3

ar

a3

@, (3.11b

These expressions fay, (i.e., for ') and A (Q) can next where

be used in Egs(2.15 and (2.18 for determination of the

scattering correlation functio@(Q,t) and its relaxation rate

constantk(Q). However, it may be useful for practical uses

to derive approximations o(Q,t). 5

C,=
5 c 5151, 1.8
C. Single exponential approximation [R®+ (e — a1)a°]Z,(dy)

Let us consider the expression ,t) whenQ—0, e_ 112i (gta) = (ata)3i.(qgt
i.e., the position correlatior?functic[rseef((eQEq)(Z.la].(Ign this XI(E = a)[3(an) " 1(nd) = (dnd) ol )]
limit we have 1-AS(Q)~Q? and the other amplitudes +a3[3(45R)?j1(95R) — (AaR)%jo(asR) ]
Al(Q) behave as\|(Q)~Q?. It thus follows thatAl(Q)
are the only amplitudes contributing ©6(Q,t) when Q +a[3(AsR)?] _2(apR) + (a7R)3) —1(q5R) ]
—0 so that

—a,[3(0pa)?) 2(dpa) +(a72)% —1(gma) ]|

- (3.13
C(Q=0t)=>, [ lim

n=0 Q—0

ANQ)
1

—-AYQ)

J exp{— Tt}

The single exponential approximation consists of replacing
C -Tk 3.1 ; . :
o " exp =Lt} .12 the multiexponential expansid3.12 by

M s

n
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o (g3)?D, continuous diffusion

, k(0)=T3i=
(0=T% Y[1—e @2 jump diffusion,
(3.14 (3.19

where @3)? is the least(in magnitudé eigenvalue of the
i.e., the inelastic part 08,(Q—0,w) is a Lorentzian. This operator H(r) defined in Eq(2.6). It follows from this that
appears to be a good approximation of E812 when Fé the position relaxation rate or the reciprocal of the time scale
<I'l<ri<... andCy=1>C;>C,>---, so that only the for the particle to diffuse over the entire allowed spacEjs
leading term contributes tG(0,t). In this case, th¢position  An approximate expression fq}), and hence foFé, can be

C(0t)=exp{—k(0)t} with k(0)= ZOF

relaxation rate can be approximated by derived by using the WKB approach to give
|
2 2(a/R)"+(v—1)(a/lR)?’—v—1](1—e P*)+2
M= (3R 2= — [2(a/R)"+(v—1)(a/R)*"—v—1]( )+2v , (3.16
V3| [2v(a/R) " 2= (v+1)(alR)Z' — v+ 1](1—e P) +2p(2— )

with v= /3. As a check, whepe =0 (which corresponds to Now, setting the expressidB.17) into Eq.(2.18), we find
diffusion inside a sphere of radilR), Eq. (3.16 predicts that the relaxation rate constant is given by

that \§=4.309 which has to be compared with the exact

value 4.333. 1

k(Q)

1

rg

1

—. (319
riy

AdQ)

1-AJ(Q)

ANQ)
1-A3(Q)

D. Biexponential approximation

For small values of) butQ+0, an expression a&(Q,t) The interesting feature of this approximation is to shed light
can also be derived by considering the Taylor expansion obn another important eigenvalue of the problem, EgyIn-
Al(Q) as a function oR. The leading terms contributing to deed, for a smooth and barrierless potential surface the ei-

1 2 2 4 0 4 0_ 1 0
C(Q,t) are Aj(Q)~Q?% A3(Q)~Q* and A)(Q)~Q* But  genvalues of k{r) are ordered agy=0<qp<---<g;<-

sincel'}<I'2 andT'? may be smaller thafi2, we only keep - -, i-e.,g<T'%. In this caseAf(Q)<Ag(Q), the relaxation
Aé(Q) andA‘l)(Q) in the expansion 0€(Q,t) to give rate has a plateaulike behavik¢Q)=TI"%, and C(Q,t) re-
duces to a single exponential.
ANQ) L A%Q) 0 However, one may observe the inversion of eigenvalues,
C(Q,t):Texp{—Fo 1 Texp{_rlt} i.e.,q5>q?, in the presence of barriers on the potential sur-
~AQ) ~AQ) face and under certain conditions of potential parameters.
~(1—Q2A)exp( — I'it} + Q2A exp{ — I'%t}, For the potential in Eq(3.1), the potential of mean force or

free energy,F(r), along the coordinate is F(r)=V(r)
—TS(r), where the entropy isS(r)=Kkg In[(t/R)?] plus a

Q—0, (3.179 constant. Thus, the free-energy bariderseparating the re-
o gion between the two concentric spheres and the inner sphere
where the constar is given by (characterized by #0) is
A i ( A%Q) } A=F(a)—F(R)=2kgT In(R/a). (3.20
- 2r1_ a0
Q-0 QT1=A0(Q)] WhenA>kgT (i.e., R/a>1.65), the fluctuations of the par-
5 ticle populations in the inner and outer spheres relax to equi-
= 5 . T librium exponentially with the rate given 2. In this case,
1R+ (e~ y)a°]1Z4(qy) the eigenvalug is smaller thargg, i.e., I'{<T§. As a re-
X |(efo— al){Z(qgaﬁj o(qga)+[(q(1)a)2—6]j 1(q$a)} sult, k(Q()) starts flrom a plateau value gloseﬂéfor smallQ
where AJ(Q)<A;(Q), decreases to its minimum &,
+a1{2(98R)%jo(q?R) +[(q°R)?— 6]j1(q%R)} turns over and increases & gets larger. In this limit,

, i C(Q,t) decays at long times with rafe® such that
+ @{2(q9R)?j _1(aR) — [(qIR)*~ 6]j _o(a3R)} '

— ax{2(q%2)%] _1(qa) —[(q7a)*~6]j _»(a%a)}|. = Iim( - %In[C(Q,t)]]
(3.18 o

(99)?D, continuous diffusion

(3.21

The inelastic part 085,,.(Q, ) is thus a bi-Lorentzian in this =‘

approximation. y[1-— e‘(q?b)z/z], jump diffusion,
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where @39)? is the least(in magnitude eigenvalue of the 1.0
operator H(r) defined in Eq{(2.6). A':,(Q)
However,C(Q,t) decays at short times as
dC(Q,t) |
— gt | “AUQTGHAYQTY. (322
t=0
This rate constanfwhich is greater thai'{ and dominated 0.5 T

by F}J) can roughly be regarded as the position relaxation
rate over length scales defined By '<R. It thus follows
from this that within the biexponential approximation,
C(Q,t) decays faster at short times with tigzdependent
position relaxation rate, and it decays at long times with the
population relaxation rate.

WhenA>kgT, an analytical expression off)? in term
of quadratures can be derived by using the first passage tim
formalism[8,9]. After calculations, we find

0.0

FIG. 1. The elastic incoherent structure fact&SPH A8(Q)

1 a2 Ke [given in Eqg.(3.3)] as a function ofQa for various values of frac-
02 =1 Kq tions: =0 (solid line), »=0.25(long-dashed ling ¢»= 0.5 (dotted
(ay) eq line), »=0.75(dashed ling and¢$=1 (dot-dashed ling The solid

(¢=0) and dot-dashed linesh=1) correspond to the EISF for a

1 sphere of radiug andR, respectively.

1+K,
’ In contrast toA%(Q), when ¢ increases the maximum of
(323 A?(Q), located around)a~ 1, decreases towards its single
where Keqz[fgrze*ﬁv(r)dr]/[fgrzefﬁv(r)dr]=(R3 s%here value0 0.075. Apart for sma&jl WhereAg(Q)NQA,
—a%e P¢/ad is the equilibrium constant between the popu-A1(Q) and Aq(Q) have roughly the same shape and both
lation of particles in the region comprised between the innePecome very small &a=4.49 for p<1.
and outer spheres and that in the inner sphere. It is worth- Moreover, we emphasize that whenincreases the maxi-
while to note that ifr;, and 7, denote the average times a mum of A5(Q) decreases while the maximum Af(Q) in-
particle spends within and out the inner sphere, respectivelgreases and the two maxima becomes of the same order of

. (R—a)?(5R%+6aR?+3a’R+a’)
15a(R?+aR+a?)

’

we haveK = Tou/ 7y and rgz Ti;l+ Tgu%_ magnitude atp=0.5 for R=5a. This opposite behavior of
the maximum ofA}(Q) and A%(Q), also noticeable on the
IV. ILLUSTRATIVE NUMERICAL RESULTS corresponding eigenvaluésee below, results from interfer-

ences between inner and outer spheres.

Now, we complete the analytical results derived above Inversion of least eigenvalueg and . The effect of the
with some illustrations obtained from numerical calculations.presence of a semipermeable inner sphere on the eigenvalue

Elastic incoherent structure factoFigure 1 displays the spectrum is illustrated in Table I. One can see that both the
EISF [i.e., the amplitudeAd(Q)] for diffusion inside two order and the orders of magnitude of eigenvalues are com-
concentric spheres of radiiandR=5a for various values of pletely shuffled compared to the single sphere dase ¢
the fraction ¢». Excepted for¢p=1, it is seen thalAg(Q) =1). Let us focus now on the two first eigenvalues. As
becomes very small & a=4.49 for all fractions. Whenp discussed above, the position relaxation time is related to the
goes from¢=0 to ¢=1 or conversely, the shape of the eigenvalueq(l) and the relaxation to equilibrium in fluctua-
EISF changes and becomes very different from that of dions of the population between inner and outer spheres to
single sphere as a result of interferences between the twibe eigenvalue’.
spheres. Forp=0.5, there is even a small window @ Figure 4a) shows the variation ok 3= (qsR)? as a func-
within which the EISF shows a plateaulike behavior. Thesgjon of the ratio of radii,a/R, for various fractionse. It
features cannot be fitted with neither a diffusion inside amppears thak } is very sensitive to the size of spheres fbr
effective single spherg3] nor inside a cylindef10]. The  smaller or of order 0.5, and it is maximum arouadR
other amplitudesA,(Q) are shown in Fig. 2 foR=5a and  _q ¢ ie. for barriersA ~ksT. One can note thak} is
¢=0.5. In contrast to a single sphere c§3k the maximum  5jways larger or equal to the single sphere value 4.3, mean-
of the next amplitudes t4(Q) are about 30% smaller than ing that the position correlation function relaxes faster in the
one. presence of an additional partially confining inner sphere.

Amplitudes A(Q) and AYX(Q). Comparison between The dashed lines over numerical data on Fig) 4ndicates
A3(Q) andAJ(Q) is shown in Fig. 3. It can be seen that the that the formula in Eq(3.16) gives a reasonably good ap-
maximum ofAé(Q), located atQa=0.5, increases a$ in- proximation to)\é for A>kgT and ¢=0.5.
creases and bumps up to 0.5 for the single sphere case. Comparison betweeqé and q‘l’ is shown in Fig. 4b)
A}(Q)~Q? asQ—0, and it becomes almost zero f@ta  where dashed lines separate two regions of relaxation dy-
=>1.25. namics. One is the region wheegg<q? (i.e., 9>1) corre-
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FIG. 2. The amplituded,(Q) [panel(a)] andA!(Q) [panel(b)] [given in Eqs(3.113 and(3.11h], as a function oRa for the fraction
¢»=0.5. The quoted numbers correspond to valuek bifote the difference in the order of magnitude betwé%(Q) andA'l(Q).

sponding to either when the radii of spheres are comparablexponential or a biexponential function of time, see Fifj. 5
(i.e., A~kgT) or when the fraction of particles in the outer  Scattering correlation function and relaxation rateig-
sphere is close to oree., ¢>0.5). In this case the problem ures %a) and §b) show a comparison of the incoherent scat-
can be approximated by the diffusion inside an effectivetering correlation functionC(Q,t), for diffusion inside a
single sphere different from the outer sphere since it is stilkingle sphere and two concentric spheres. G&<0.1 (i.e.,
possible to haveg<q?<qj (see Table)l We call this the  for large length scalésC(Q,t) for the single sphere case
normal region because of the resemblance to the singlgecays exponentially with the rate constk(@):l“é since
sphere case. The amplitud&;(Q) is much larger than gominated by the relaxation of the position. ABR in-
AY(Q) and the only characteristic time is the position relax-creasesC(Q,t) in the single sphere case becomes multiex-
ation time related tm]é. ponential as a result of an increasingly number of harmonics
By opposition to the normal region, second is the invertedcontributing toC(Q,t). This latter tends to a single exponen-
region wheregs>q (i.e., #<1) corresponding to the situa- tial again at higheQR (very short length scalgsvhere the
tion in which either the radii of spheres are very differentnumber contributing harmonics tends to infinity.
from each othefi.e., A>kgT) or a large fraction of particles In the case of two concentric spher€4Q,t) also decays
is contained in the inner sphefee., $<0.5). Figure 4b) exponentially with the rate constamQ):Fé for QR=0.1
shows that §9/gg)2<e #* in this range. In this case, the because the amplitudes other thAj(Q) are too small to
amplitudeA‘f(Q) is greater than or of order thaa(ﬁ(Q) and contribute so that the single exponential approximation is
the relaxations of position and population between spherejsistified. On the other hand;(Q,t) exhibits a biexponential
compete as a function dp to the overall relaxatiofi.e.,  decay as a function of time for intermediate valuesQ@R
depending on the value @, C(Q,t) may be either a single where the amplitudes Iiké\‘}(Q) are of the same order of
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FIG. 3. The amplitude#}(Q) [panel(a)] andA%(Q) [panel(b)] as a function ofQa. The quoted numbers correspond to valuegof
Note the different scales of theaxis between the two panels.
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TABLE I. The first 11 roots in ascending order of £§.8) for tric spheres goes further i@R values similar to diffusion
R=5a (i.e., for A=3.2%gT) and ¢=0.5 (i.e., fore=4.84gT),  inside a cylinder[10]. For the cylinder, this extension of
where @,)? are the eigenvalues of the diffusion operator. Fromk(Q) is attributed to the anisotropy of the cylindrical shape.
Egs.(3.16 and(3.23 we find that\5=5.07 and\}=1.81, respec- For the two concentric spheres, the anisotropy arises from
tively. The columné=1 corresponds to eigenvalues for diffusion ¢ross transitions between the inner and outer spheres. In ad-
inside a sphere_of rad_iLB; the number in pqrentfleses goives their gition to this, k(Q) for the two concentric spheres has a
order. Note the inversion of order fef=0.5, i.e.,qp=2.60;. turnover behavior as a function gf with a minimum atQ,,
as an indication of the inversion of the least eigenvalues.

n ! M= (AnR)? This inversion of least eigenvalues is also noticeable on
$=0.5 $=1 C(Q,t) since, as for the example shown in Figbp C(Q,t)
is exponential forQR=0.1 and biexponential foQR=5
0 0 0.0000 0.0000(0) while the relaxation rat&(Q) is exactly the same for the two
1 0 1.7558 20.191(3) values ofQR (with Q,R=3.2). The analysis shows that for
0 1 4.5394 4.3330(1) intermediate values o®R, C(Q,t) is well described by a
0 2 11.185 11.170(2) single exponential folQ<Q,, while it is a biexponential
0 3 20.342 20.377(4) function of time forQ>Q,,.
0 4 31.822 31.885(5) As expected, for the two cases of single sphere and two
2 0 32.534 59.680(9) concentric spheres, the differencesdfQ,t) andk(Q) be-
1 1 39.880 35.288(6) tween the continuous and jump-diffusion models appear only
0 5 45.559 45.650(7) at higherQ, i.e., for very short length scales.
1 2 54.473 53.143(8)
0 6 61.516 61.639(10) V. SUMMARY

As an extension to the diffusion inside a sphere model we
have considered the problem of diffusion inside two concen-
magnitude tham(Q). The short-time decay rate is given by tric spheres as a model for diffusing motions within a closed
the position relaxation rate over length scales under considegion or cage containing another semipermeable cage that
eration and the long-time decay rate by the population relaxdivides the system into two subregions. Our aim has been to
ation ratel';. This corresponds to the inverted region on Fig.derive the EISF and the incoherent scattering correlation
4(b) whereT'9<T}, i.e., the relaxation of the position for function C(Q,t) for this model of diffusion inside two con-
these length scales occurs faster than the relaxation to equientric spheres. The main results of calculations, which have
librium in fluctuations of population between spheres. As abeen done for both continuous and jump diffusions, can be
consequence, for the same length scales under considerati@ymmarized as follows.
the overall decay of£(Q,t) for two concentric spheres is The EISF[i.e., the amplitudeAg(Q)] is characterized by
smaller than that for the single sphere case. three parameters: the radiasof the semipermeable inner

Likewise, comparison of the relaxation rate,Q), for  sphere, the radiuR of the outer sphere, and the degree of
diffusion inside a single sphere and two concentric spheres isermeability ¢ which describes the fraction of equivalent
shown in Fig. 6. Apart from oscillations resulting from inter- particles diffusing in the outer sphere. As a result of interfer-
ferences, the value &f(Q) at low QR is slightly greater for ences between spheres, we find that the EISF is a weighted
the two concentric spheres than that for the single sphereoherent summation over amplitudes corresponding to inner
case. The plateaulike behavior ofQ) for the two concen- and outer spheres.

10.0 T T T T T T T T TT 10.0 T T T T T LI -

S

&
o

a/R

FIG. 4. Eigenvalue\j=(qsR)? [panel(a)] and the log-log plot of the rati®=(qz)%/(q3)? as a function of/R. The quoted numbers
correspond to values af. The dashed lines in pané) represent the approximation in E@®.16) for ¢=0.5 and 0.9.
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FIG. 5. Correlation functiorC(Q,t) as a function of the reduced tink€Q)t, wherek(Q) is the relaxation rate constant. The quoted
numbers correspond to values of the scattering wave v€zRrk(Q)=Dk.4/R? for the continuous diffusiorisolid lines with diffusion
coefficient D, and k(Q) = ykjq for the jump diffusion(dashed lingswith the jump lengthb=0.15R and jump frequencyy=2D/b?
=89D/R?2. (a) Diffusion inside a sphere of radiusR with the relaxation rate constants QR, KedKja)
={(0.1,4.36,4.2%5(5,16.55,15.08(10,80.35,52.43) (b) Diffusion inside two concentric spheres of radiiand R=5a for ¢=0.5. The
relaxation rate constants ar@R kcq,kjq) ={(0.1,4.74,4.61,(5,4.73,4.60;(10,14.49,13.2T) For comparison, the position and population
relaxation rates areI%,F‘f)z(4.54,1.76)>< D/R? for both continuous and jump diffusions. The equilibrium constant between inner and
outer populations i ¢q= Tou/ 7in=0.98 and the inner residence timerig=1.15< R/D~30x a%D.

WhenQ—0 (i.e., for QR<0.1), the incoherent scattering mated by a single exponential with the ra¢(eQ)~Fé for
correlation function decays exponentially as a function ofQR< 7. For higher values 0QR, C(Q,t) becomes multi-
time with the rate given by the position relaxation rateexponential because of the contribution of higher harmonics.
k(0)=T'§ [see Eq(3.19]. In the oppositeQ— < limit (i.e., In the inverted region(i.e., Rla>1.6=A>kgT and/or
for QR>10), C(Q,t) has also an exponential decay as a¢=<0.75) on the other han#(Q) shows a turnover behavior
function of time as given in Eq(2.17). For intermediate as a function ofQ with a minimum atQ,,. ForQ<Q,,, the
values of QR, however, there are two types of decay for correlation functionC(Q,t) is well described by a single
C(Q,t) depending upon the ratio of rad#i/a [i.e., the en- exponential whereas it is a biexponential function of time for
tropic barrier,A, see Eq(3.20] and the fractiong. Q>Q,,. In this latter case, the short-time decay rate of

In the normal regiori.e., Rla~1.6=A~kgT and/or ¢ C(Q,t) is controlled by the position relaxation rate over
~1), the problem can be approximated by a diffusion insiddength scale® ! and the long-time decay rate by the popu-
an effective single sphere which the radius can be detelation relaxation raté“(l) [see Eq(3.2))]. For these values of
mined from the EISF. In this cas€(Q,t) can be approxi- QR, the relaxation of the position occurs faster than the re-
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FIG. 6. Reduced relaxation rate constaRt&(Q)/D (continuous diffusion, solid ling@sandk(Q)/y (jump diffusion, dashed lingéss a
function of (QR)2. (a) Diffusion inside a sphere of radiuR (i.e., $=1) and inside two concentric spheres of raaiand R=>5a (¢
=0.5). For the jump diffusion, the jump lengthlis=0.15R and the jump frequency=2D/b?=89D/R?. (b) Zoom of paneka) showing
the turnover behavior ok(Q) for ¢=0.5. The coincidence between quoted curties, solid-solid and dashed-dashed linescurs at
QR=1.36 whereR?k(Q)/D =4.65 andk(Q)/y=4.53, and the minimum is located @t,R=3.25.
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laxation to equilibrium in fluctuations of population between where the autoadjoint operatoj(id) is given by
spheres. The biexponential behavior ©fQ,t) takes place
up to higher values oQR like, for example,QR~10 for ehfvni2 g d eV (1+1)
R=5a (i.e., A=3.%gT) and ¢=0.5[see Fig. §)]. Hi(r)=— arze*f"’(”a — =
Finally, the model discussed in this paper is essentially a r
simple example of motions in a confining potential with bar-
rier crossing. The foregoing analysis outlines what kind of | | . . .
information one can get by using the incoherent neutron sca=6t O and y,(r) be the elgenyalues gnd elgenfun_ctlor)s of
tering technique to study this problem. The model can bdn€ operator i{r), the Green's function of the diffusion
extended to include, for example, anisotropic effects, multi£duation(A3) is thus given by
domain systems, or to deal with situations where the diffu-
sion rates are different in each subregion. In addition, al-
though the discussion was presented for the translational
diffusion this model can properly be adapted and applied as
well to other degrees of freedom like rotation and vibration. X exp{—(qp)?Dt}, (AB)
It may be instructive to investigate also in these directions.
with gg=0 andr?pe(r)=|yg(r)|?. As a result, for a purely
ACKNOWLEDGMENTS isotropic diffusion problem with a constant diffusion coeffi-
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(A5)

e BIV(N-=V(rg)l2. =

9i(rtlro)= ————— 2 (43 '(ro)

2. Random jump-diffusion model

As introduced in this context by Hall and RdgH, in this
APPENDIX: GREEN'S FUNCTIONS FOR CONTINUOUS model one assumes that the particle undergoes successive
AND JUMP-DIFFUSION MODELS uncorrelated jumps from site to site governed by the spatial
. . . . , probability distribution,p(r,1Jr), of finding the particle at
In this appendix we derive formal expressions for Green'syar 5 single jump given that it was initially . Jumps are
functions, G(r,t|ro), describing the particle diffusion in @ 4s5umed to be statistically independent events of zero dura-
potential V(r). To this end, we consider the two diffusion ion and the time interval between successive jumps is a

models commonly used for the derivation @{r,t|ro). random variable obtained from the distributione™ !,
_ o wherey is the jump frequency. For this jump diffusion, the
1. Continuous diffusion model probability densityG(r,t|ro), satisfies the integral equation

When the particle motion can be described as a continu-
ous diffusion, the probability densitg(r,t|ry), satisfies the
Smoluchowski equation

G(r,t[ro)=p(r,ro)e "

t
~|—f dr’J drye” " Dp(r,1r")G(r',7ry).
0

iG
—=V. =BV(r), BV(r)
P V-D(r)e Ve G, (A1) A7)

whereD(r) is the diffusion tensor which we will assume to Thijs can be rewritten in an infinite series of the form
be a constant tensor independent o¥Vhen both the poten-

tial and the diffusion are isotropid3(r,t|ry) can be ex- Z o (y)m
panded in terms of spherical harmonic functioffy(2) as G(r,trg)= >, - e "p(r,m|ry), (A8)
m=0 :
% m=+1
G(r,t|r0)=|20 gi(r.tfro) > | Y)Y ™(Qo), wherep(r,m|r,), the probability density of finding the par-
= M=

A2) ticle atr after am jumps given that it was initially atg, is
such thatp(r,m+1|rg)=Jfdr’p(r,1r")p(r’,m|ry). For the

where the functiong(r,t|ro) satisfies the Smoluchowski Purpose of the model, it is convenient to assume that for

equation in the presence of an angular momentum sinklikérge m, the spatial probability distributiop(r,m|ro) satis-

term, fies the diffusion equation

g |19 , d [(1+1) p ey v

2= —BV(r) L aBV(1) _ L =V.B(r)e Ay, (A9)

ot |rzar’ Pe ar © 2|9 A9 om ( P
Using the transformation, gi(r,t) whereB(r) is the jump length tensor which we will assume
:ef(q')ZDtef,l?V(r)/ZwI(r)/r Eq. (A3) reduces to the eigen- © be a constant tensor independent ofs for the continu-
value problem ’ ous diffusion, when both the potential and the jump events

are isotropic, the functiop(r,m|ry) can be expanded in
Hi (' (r)=—(q"2y'(r), (A4)  terms of spherical harmonic functiohg'() as
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* m=+1 Whereq'n and z,/;'n(r) are the eigenvalues and eigenfunctions
p(r,mro)=2, pi(r,mire) 2 YM(Q)Y;F™Qy), of the operator Kr) defined in Eq.(A4). Combining Egs.
1=0 m=-1 (A10) and(A12) into Eq.(A8), we find that for the isotropic

(A10) jump-diffusion model, the Green’s functig®(r,t|ro) is still
wherep,(r,m|r,), satisfies the diffusion equation given by Eq.(A2) but with g,(r,t|ro) given by
2
| L9 o0 v T v D) . = (yt)™
gm [r2or 2 N r2 artlro=2> mi e "pi(r,mlro)
(A11) m=0 HF
in which we have used B=b25,;, whereb is the jump _ e AVOV2 2
length. This equation is identical to EGA3) with the corre- N I = Yn(r) ¥ (Fo)
spondence Rt=b?m. It thus follows from what precedes |
that X exp(—{1—exd — (a,b)%/2]} yt).
—BIV(r)=V(rg)l2. = (A13)
e | * |
pi(rumlro) = ——— " 2 Y1) (1o)
| In the b—0 limit, Eq. (A13) coincides with Eq.(A6) for
X exp{ — (a,b)*m/2}, (A12)  p?y=2D.
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